FRAME OF REFERENCE
CONCEPTAmong the many specific concepts the student of physics must learn, perhaps none is so deceptively simple as frame of reference. On the surface, it seems obvious that in order to make observations, one must do so from a certain point in space and time. Yet, when the implications of this idea are explored, the fuller complexities begin to reveal themselves. Hence the topic occurs at least twice in most physics textbooks: early on, when the simplest principles are explained—and near the end, at the frontiers of the most intellectually challenging discoveries in science.
HOW IT WORKS
There is an old story from India that aptly illustrates how frame of reference affects an understanding of physical properties, and indeed of the larger setting in which those properties are manifested. It is said that six blind men were presented with an elephant, a creature of which they had no previous knowledge, and each explained what he thought the elephant was.
The first felt of the elephant’s side, and told the others that the elephant was like a wall. The second, however, grabbed the elephant’s trunk, and concluded that an elephant was like a snake. The third blind man touched the smooth surface of its tusk, and was impressed to discover that the elephant was a hard, spear-like creature. Fourth came a man who touched the elephant’s legs, and therefore decided that it was like a tree trunk. However, the fifth man, after feeling of its tail, disdainfully announced that the elephant was nothing but a frayed piece of rope. Last of all, the sixth blind man, standing beside the elephant’s slowly flapping ear, felt of the ear itself and determined that the elephant was a sort of living fan.
These six blind men went back to their city, and each acquired followers after the manner of religious teachers. Their devotees would then argue with one another, the snake school of thought competing with adherents of the fan doctrine, the rope philosophy in conflict with the tree trunk faction, and so on. The only person who did not join in these debates was a seventhblind man, much older than the others, who had visited the elephant after the other six. While the others rushed off with their separate conclusions, the seventh blind man had taken the time to pet the elephant, to walk all around it, to smell it, to feed it, and to listen to the sounds it made. When he returned to the city and found the populace in a state of uproar between the six factions, the old man laughed to himself: he was the only person in the city who was not convinced he knew exactly what an elephant was like.
REAL-LIFE APPLICATIONS
Points and Graphs
There is no such thing as an absolute frame of reference—that is, a frame of reference that is fixed, and not dependent on anything else. If the entire universe consisted of just two points, it would be impossible (and indeed irrelevant) to say which was to the right of the other. There would be no right and left: in order to have such a distinction, it is necessary to have a third point from which to evaluate the other two points.
As long as there are just two points, there is only one dimension. The addition of a third
point-as long as it does not lie along a straight line drawn through the first two points-creates two dimensions, length and width. From the frame of reference of any one point, then, it is possible to say which of the other two points is to the right.
Clearly, the judgment of right or left is relative, since it changes from point to point. A more
absolute judgment (but still not a completely absolute one) would only be possible from the frame of reference of a fourth point. But to constitute a new dimension, that fourth point could not lie on the same plane as the other three points—more specifically, it should not be possible to create a single plane that encompasses all four points.
Assuming that condition is met, however, it then becomes easier to judge right and left. Yet right and left are never fully absolute, a fact easily illustrated bysubstituting people for points. One may look at two objects and judge which is to the right of the other, but if one stands on one’s head, then of course right and left become reversed.
Of course, when someone is upside-down, the correct orientation of left and right is still fairly obvious. In certain situations observed by physicists and other scientists, however, orientation is not so simple. It then becomes necessary to assign values to various points, and for this, scientists use tools such as the Cartesian coordinate system.
COORDINATES AND AXES. Though it is named after the French mathematician and philosopher René Descartes (15961650), who first described its principles, the Cartesian system owes at least as much to Pierre de Fermat (1601-1665). Fermat, a brilliant French amateur mathematician-amateur in the sense that he was not trained in mathematics, nor did he earn a living from that discipline—greatly developed the Cartesian system. A coordinate is a number or set of numbers used to specify the location of a point on a line, on a surface such as a plane, or in space. In the Cartesian system, the x-axis is the horizontal line of reference, and the y-axis the vertical line of reference. Hence, the coordinate (0, 0) designates the point where the x- and y-axes meet. All numbers to the right of 0 on the x-axis, and above 0 on the y-axis, have a positive value, while those to the left of 0 on the x-axis, or below 0 on the y-axis have a negative value.
Reference :
Judson Knight. 2002.Science Of Everyday Things Volume 2 Real Life Physics. Michigan : Gale Group Thomson Learning
No comments:
Write comments